New research details an intriguing new way to solve "unsolvable" algebra problems that go beyond the fourth degree – something that has generally been deemed impossible using traditional methods for ...
A UNSW Sydney mathematician has discovered a new method to tackle algebra's oldest challenge—solving higher polynomial equations. Polynomials are equations involving a variable raised to powers, such ...
Solving one of the oldest algebra problems isn't a bad claim to fame, and it's a claim Norman Wildberger can now make: The mathematician has solved what are known as higher-degree polynomial equations ...
A C implementation of Niederreiter's algorithm for factoring polynomials over F 2 is described. The most time-consuming part of this algorithm, which consists of setting up and solving a certain ...
If \((x \pm h)\) is a factor of a polynomial, then the remainder will be zero. Conversely, if the remainder is zero, then \((x \pm h)\) is a factor. Often ...
Complexity theory is a branch of computer science that studies the resources required to solve computational problems, particularly focusing on the classification of problems based on their inherent ...
A mathematician at Carnegie Mellon University has developed an easier way to solve quadratic equations. The mathematician hopes this method will help students avoid memorizing obtuse formulas. His ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results